
Context-free languages: generalizing &
characterizing

Keny Chatain

March 29, 2020

In this note, I propose to characterize a constructive characterization of the class of
context-free languages. The goal is to have a characterization similar to the charac-
teriation of the class of rational languages, as the class of smallest languages closed
under some natural operations.

The formal details are interspersed with a Haskell implementation.

1 The word setting

1.1 Introduction

Here, we assume an alphabet Σ (Char in the Haskell implementation) and the set of
strings on that alphabet, Σ∗ (String).

A language is a collection of strings. The use of the word “collection”, instead of
“set”, is meant to reflect the fact that not all sets operations will be available to us.
A collection, only makes available some operations like union and singleton set and
certain form of set comprehension (the latter two are properties of Applicative):

class Applicative f => Collection f where
union : : f a −> f a −> f a

instance Collection [] where
union = (++)

- - u s e " s h o w $ t a k e 1 0 l " t o d i s p l a y e l e m e n t s f r o m a n y g i v e n l a n g u a g e " l "

- - T O D O : i n p r a c t i c e , we ’ d b e b e t t e r o f f w i t h s o m e t h i n g t h a t i n t e r s p e r s e d

e l e m e n t s f r o m b o t h l i s t s ; o t h e r w i s e , l i s t i n g e l e m e n t s f o r m t h e

l a n g u a g e i s n o t e x h a u s t i v e

type ContextFree = f o r a l l f . Collection f => f Str ing

Using an applicative allows us to “lift” any operation and any element defined on
words into the realm of languages. To an element, corresponds the singleton lan-
guage of that element. To word concatenation, corresponds language concatena-
tion:

cat : : ContextFree −> ContextFree −> ContextFree

1

cat l 1 l 2 = (pure (++)) <*> l 1 <*> l 2

So languages (i.e. collection of words) have two types of operations defined on them:
those that can be imported from the underlying structure of words (concatenate,
elements) and those that follow from the structure of a collection (e.g. union). With
this, one may define some finite languages:

- - l a n g u a g e 1 : a b + b a

language1 : : ContextFree
language1 = ((pure "a") ‘ cat ‘ (pure "b")) ‘ union ‘ ((pure "b") ‘ cat ‘ (pure

"a"))

- - l a n g u a g e 2 : a b (a + b)

language2 : : ContextFree
language2 = (pure "a") ‘ cat ‘ (pure "b") ‘ cat ‘ ((pure "a") ‘ union ‘ (pure "

b"))

In fact, taking advantage of recursivity/lazy evaluation, we can also define infinite
languages as well:

- - l a n g u a g e 3 : a *

language3 : : ContextFree
language3 = (pure " ") ‘ union ‘ ((pure "a") ‘ cat ‘ language3)

More generally, Kleene star can be defined through a form of recursivity as well:

- - K l e e n e s t a r t \ L - > L *

s t a r : : ContextFree −> ContextFree
s t a r l = pure " " ‘ union ‘ (l ‘ cat ‘ (s t a r l))

So the class of languages we can define is also closed under union, concatenation
and Kleene star and contains all finite sets. A minima then, we can define any regular
language:

- - l a n g u a g e 4 : a * b *

language4 : : ContextFree
language4 = (s t a r $ pure "a") ‘ cat ‘ (s t a r $ pure "b")

But recursivity allows us to define more languages than just that. For instance, the
famed non-regular

{
anbn | n ≥ 0

}
:

- - l a n g u a g e 5 : { a ^ n b ^ n | n >= 0 }

language5 : : ContextFree
language5 = pure " " ‘ union ‘ (pure "a" ‘ cat ‘ language5 ‘ cat ‘ pure "b")

In fact, we can build a context-free grammar, by making use of crossed recursivity:

{ -

G r a m m a r :

T U P L E - > (V A L U E S)

V A L U E S - > V A L U E S , T U P L E

V A L U E S - > e m p t y s t r i n g

-}

tuple : : ContextFree
values : : ContextFree

2

tuple = (pure " (") ‘ cat ‘ values ‘ cat ‘ (pure ") ")
values = (pure " ") ‘ union ‘ (values ‘ cat ‘ pure " , " ‘ cat ‘ tuple)

So all context-free languages can be defined in Haskell. Can we do even more than
that? Interestingly no. The class of languages definable in Haskell, using only the op-
erations made available by collections, words and recursivity, is the class of context-
free languages. In some sense, context-free languages is the smallest class of lan-
guages closed under union and concatenation and recursive functions made from
them.

In the next section, I set out to prove that result in its formal details.

1.2 Formalization

Before we do so, the notion of recursivity needs to be formalized. Informally, recur-
sivity is a way of generating fixed points.

- - d e f i n i n g r e c u r s i v i t y i n t e r m s o f f i x e d p o i n t

f i x : : (ContextFree −> ContextFree) −> ContextFree
f i x f = f $ f i x f

- - l a n g u a g e 3 p r i m e : a *

rec_l3 : : ContextFree −> ContextFree
rec_l3 l = (pure " ") ‘ union ‘ ((pure "a") ‘ cat ‘ l)
language3prime : : ContextFree
language3prime = f i x rec_l3

Of course, in Haskell, these is no guarantee of convergence, hence no guarantee that
there is a fixed-point to any function. However, in the limited realm of functions that
we consider, such guarantees are possible:

Proposition 1. If f is an increasing function from languages to languages (i.e. L ⊂
L′ ⇒ f (L) ⊂ f (L′)), then

FixPt(f) =⋂{
L

∣∣ f (L) ⊂ L
}

is a fixed point. It is the smallest fixed point in fact (for subsethood).

Coincidentally, all the functions we can define with union and concatenation are
increasing. Had we been working with sets, instead of collections, and allowed such
operations as complementation, we could construct non-monotonic function and
the fixed-point guarantee would have vanished. A further thing to note is that in
some high-order sense, FixPt is increasing:

Proposition 2. If f and f ′ are two increasing functions, and f ′ dominates f (i.e.
f (L) ⊂ f ′(L) for all L), then

FixPt(f) ⊂ FixPt(f ′)

So all the operations at our disposal - union, concatenation- will only ever generate
increasing functions. Any function formed from FixPt will also be increasing and
FixedPt can apply to it. So it makes sense to talk about the smallest set containing
finite languages closed under these 3 operations: union, concatenation, and fixed
point. The next section makes that precise.

3

1.3 Context-free expressions

We are aiming for a characterization of context-free languages in terms of some
primitive elements and operations, the same way rational languages are defined as
the smallest class of languages containing singletons and closed under rational op-
erations (union, concatenation, Kleene star). The difference is that here, our prim-
itive operations include FixPt, which operates on functions. Therefore, our expres-
sions will need to model both languages and functions on languages at the same
time.

Definition 1. A context-free expression is:

• a word (e.g. a, abba) (type ContextFree)

• a variable over languages (type ContextFree)

• the union of two context-free expressions of type ContextFree, denoted L+L′

• the concatenation of two context-free expressions of type ContextFree, denoted
LL′

• the least fixed-point of a context-free function (type ContextFree→ContextFree),
denoted Fix(L)

• if E is a context-free expression of type a,λX .E is an expression of type ContextFree→
a

• if E is a context-free expression of type a → b and E ′ an expression of type a,
E(E ′) is an expression of type b

We can provide a straightforward semantics for these expressions1:

Definition 2. The object denoted by a context-free expression S

• JwKg = {w}

• JX Kg = g (X)

• JL+L′Kg = JLKg ∪ JL′Kg

• JLL′Kg = JLKg JL′Kg

• JλX . EKg = L 7→ JEKg [X←L]

• JE(E ′)Kg = JEKg (
JE ′Kg)

• JFix(E)Kg = FixPt(JEKg)

Because of the type system and the facts about increasingness discussed in the last
subsection, all of these operations are going to be well-defined.

1Because of variables, I have to define rational expressions syntactically and then provide a semantics
for these expressions. To avoid this extra step, we could use variable-free representations using com-
binators from e.g. combinatory logic. However, what we gain in conceptual transparency, we lose in
notational transparency: the simplest function require a lot of combinators to write.

4

Original grammar Factorizing left-hand
sides

Convert to a system of
equation

T → aV b
V → ε

V → T cV

T → aV b
V → ε+T cV

LT = aLV b
LV = ε+LT cLV

1.4 Equivalence to context-free languages

The context-free languages are those languages denoted by a context-free expres-
sion. To prove this, two steps are needed. We need to be able to convert from a
context-free grammar to context-free expression and vice-versa.

Obtaining a context-free grammar from a context-free expression. To each ex-
pression E , we associate a set of context-free rewrite rules Rules(E) and a distin-
guished start symbol Start(E) as below. I assume that to all language variables cor-
respond a non-terminal and Si will stand for any nonterminal that hasn’t be used so
far.

• Rules[w] = [S → w]
Start[w] = S

• Rules[X] = []
Start[X] = X

• Rules[EE ′] = [S → Start(E)Start(E ′)]
Start[EE ′] = S

• Rules[E +E ′] = [S → Start(E),S → Start(E ′)]
Start[E +E ′] = S

• Rules[λX .E] = Rules(E)
Start[λX .E] = Start(E)

• Rules[(λX .E)E ′] = Rules(E)++ Rules(E ′)++ [X → Start(E ′)]
Start[(λX .E)E ′] = Start(E)

• Rules[Fix(λX .E)] = Rules(E)++ [X → Start(E)]
Start[Fix(λX .E)] = X

Obtaining a context-free expression from a context-free grammar. The following
is extremely reminiscent of the method used to resolve system of language equations
for regular expressions (cf proof of Kleene’s theorem). The first step is to rewrite
a context free grammar as a system of equations over languages. I will show how
this is done on a simple example ; hopefully, this example will make a more general
statement superfluous. To each terminal X corresponds the unknown LX

There is of course a relation between the solution of this system of equations and
the context-free language itself:

5

Proposition 3. The system of equations obtained from a context-free grammar has a
smallest solution (for inclusion). This smallest solution is the tuple (LX1 = L(X1), . . . ,LXn =
L(Xn)) where L(Xi) is the language generated by non-terminal Xi

So in our example:, we can in particular write

L(T) = aL(V)b
L(V) = ε+L(T)cL(V)

Each of these equation can be seen as stating that a certain L(X) is the fixed point of
a function2:

L(V) = (λX . ε+L(T)c X) (L(V))

Two things: first, each L(X) has to be the smallest such fixed point. Otherwise, we
could form a non-bigger solution by replacing L(X) with a non-bigger fixed point
in the solution tuple. Second, the function is increasing that each L(X) is the fixed
point of is increasing. In other words:

L(V) = Fix (λX . ε+L(T)c X)

These remarks allow us to reduce any of the L(X) into a context-free expression. The
idea is the same as with any system of equations: express one unknown in terms of
the other, replace the unknown with its expression in terms of the other in all the
other equations, repeat until all unknowns are eliminated. So in our particular case,
we can replace L(V) with its expression above in the first equation of the system

L(T) = aFix (λX . ε+L(T)c X)b

This can be taken to mean that L(T) is the fixed point of the function:

L(T) = (λY . aFix (λX . ε+Y c X)b) (L(T))

With a similar reasoning as above, we can conclude that:

L(T) = Fix (λY . aFix (λX . ε+Y c X)b)

If T is the start symbol of the grammar, then we just found that the context-free
language can be expressed by a context-free expression. This concludes the proof
that every context-free language is expressible in terms of these expressions

2Note that I am temporarily suspending the distinction between context-free expressions and the lan-
guage they denote. This distinction is a technical hassle.

6

1.5 Missing pieces

There is one aspect of the Haskellization which is regrettable. In Haskell, there is a
way to write context-sensitive languages if we allow ourselves to lift more complex
string-based operations than the primitive operation of word, concatenation. For
instance, this implementation of

{
anbanban | n ≥ 0

}
:

- - c o n t e x t - s e n s i t i v e l a n g u a g e s , i f w e a l l o w " n o n - p r i m i t i v e " l i f t e d

o p e r a t i o n s

- - l a n g u a g e 6 : a ^ n b a ^ n b a ^ n

language6 : : ContextFree
language6 = fmap (\ x −> x ++ "b" ++ x ++ "b" ++ x) (s t a r $ pure "a")

Added to that, it can be argued that the Haskell fragment is more expressive than
context-free expressions. For instance, Haskell can express functions of type (ContextFree→
ContextFree) → ContextFree → ContextFree, while context-free expressions do not.
If such functions are available to Haskell, can Haskell express more languages than
context-free expressions can?

Formally, this corresponds to asking whether we would obtain non-context-free lan-
guages if we allowed higher-order fixed-points, i.e. fixed points of (ContextFree →
ContextFree) →ContextFree→ContextFree. We would need a theorem giving us the
existence of a privileged fixed point for such expressions. There are such guarantees

Contrary to my own expectations, it turns out that context-sensitive languages can
be expressed using higher-order fixed-points:

- - c o n t e x t - s e n s i t i v e l a n g u a g e w i t h h i g h e r - o r d e r f i x e d - p o i n t

- - g e n e r a t o r i s t h e l e a s t f i x e d p o i n t o f \ F \ L L L L + F (a L)

generator : : ContextFree −> ContextFree
generator l = (l ‘ cat ‘ l ‘ cat ‘ l) ‘ union ‘ (generator $ (pure "a") ‘ cat ‘ l

)
- - l a n g u a g e 7 : a ^ n b a ^ n b a ^ n b

language7 : : ContextFree
language7 = generator $ pure "b"

2 Extensions

2.1 Monoids

In essence, all the work we have been doing did not depend, in any essential manner,
on taking words to be the underlying monoid. In fact, we can define context-free
languages in any monoid:

class Applicative f => Collection f where
union : : f a −> f a −> f a

type ContextFree a = f o r a l l f . Collection f => f a

Kleene star and concatenation is definable in the same way:

7

- - c o n c a t e n a t i o n

cat : : (Monoid a , Collection f) => f a −> f a −> f a
cat l 1 l 2 = (pure mappend) <*> l 1 <*> l 2

- - K l e e n e s t a r

s t a r : : Monoid a => ContextFree a −> ContextFree a
s t a r l = (pure mempty) ‘ union ‘ (l ‘ cat ‘ (s t a r l))

This is useful in defining for instance context-free relations, the equivalent of ratio-
nal relations/finite-state transducers. Here is for instance the duplicating function
on strings:

type ContextFreeRelation = ContextFree (String , Str ing)

- - e s t a b l i s h e s a r e l a t i o n b e t w e e n w a n d w w f o r a n y w m a d e o f a ’ s a n d b ’ s

duplicate : : ContextFreeRelation
duplicate = (pure mempty) ‘ union ‘ ((pure ("a" , "a")) ‘ cat ‘ duplicate ‘

cat ‘ (pure (" " , "a"))) ‘ union ‘

2.2 Arbitrary structures

In fact, more generally, context-free languages can be defined on any structure whose
primitive operations can be lifted by an Applicative. For instance, trees:

[INSERT EXAMPLE]

What is a context-free language of trees? By an unfortunate accident of history, these
are what have been called regular tree languages. . .

The only crucial piece for us to define a context-free language is the existence of
a FixedPt function. FixedPt is only defined for increasing functions. Importantly,
lifted operations always result in increasing functions:

Proposition 4. If ↑ is a unary operation defined on S, then the lifted operation ↑↑ on
collections of S is increasing in its argument.
If ⊕ is a binary operation defined on S, then the lifted operation ~ on collections of S
is increasing in both arguments.
etc.

Proofs

2.3 There is a smallest fixed point

Proof. Because FixPt(f) is an intersection:

∀L, f (L) ⊂ L ⇒ FixPt(f) ⊂ L (1)

Because f is increasing, we conclude:

∀L, f (L) ⊂ L ⇒ f
(
FixPt(f)

)⊂ f (L)

8

Because L is a subset of f (L):

∀L, f (L) ⊂ L ⇒ f
(
FixPt(f)

)⊂ L

So, by intersection:

f
(
FixPt(f)

)⊂⋂{
L

∣∣ f (L) ⊂ L
}= FixPt(f)

This proves one inclusion. To prove the reverse inclusion, we notice that because f
is increasing, we also have

f (f (FixPt(f))) ⊂ f (FixPt(f))

Plugging in this result in eqn 1, we get:

FixPt(f) ⊂ f (FixPt(f))

So by double inclusion, these two languages are equal. Because all fixed points L
are such that f (L) ⊂ L and FixPt(f) is the smallest of these languages, FixPt(f) is the
smallest fixed-point

2.4 FixPt is increasing

Proof. Because f ′ dominates f :

f (FixPt(f ′)) ⊂ f ′(FixPt(f ′)) = FixPt(f ′)

By definition of FixPt(f), this entails that

FixPt(f) ⊂ FixPt(f ′)

2.5 Not in main text

Proof. This simply follows from the definition of the lifted version. If L ⊂ L′, then:

↑↑ L = {↑ x | x ∈ L} ⊂ {↑ x
∣∣ x ∈ L′}=↑↑ L′

9

	The word setting
	Introduction
	Formalization
	Context-free expressions
	Equivalence to context-free languages
	Missing pieces

	Extensions
	Monoids
	Arbitrary structures
	There is a smallest fixed point
	FixPt is increasing
	Not in main text

