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Introduction

Background. In the linguistic community, different people will associate the claim of
existence of UG to different contents. One common interpretation is the following:

Claim A: Universal Grammar-s. The language faculty consists in a description of
a class of languages. The task of learning consists in correctly selecting a language
from that class that corresponds to the input.

Under Claim A, children may, for instance, be born with the ability to describe context-
free grammars. They then start to construct a context-free grammar that corresponds
to their input. Different languages correspond to different elements of that set. An-
other claim, which Chomsky seems to endorse, is the following:

Claim B: Universal Grammar-; The language faculty consists in a description of
one abstract language. The task of learning consists in correctly finding a mapping
from this language to phonological forms and vice-versa, so that the produced forms
correspond the input.

Under claim B, children may, for instance, be born with the languageΩ= {
anbn | n ∈N}

.
They soon learn to map this language to

{
(the cat the dog)n(chased chased)n arrived

∣∣ n
}
.

(This is only provided as an example ; it stands to reason that UG will have to be more
complicated than Ω to capture all possible constructions of English). Different lan-
guages correspond to different mappings of the structures of UG.
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In both claim A and claim B, the complexity of observed1 natural languages is a
direct correlate of the complexity of the underlying representations. The observed
center-embeddings of the English language point for instance to the underlying context-
freeness of UG (claim B), or to the possibility of writing context-free languages with UG
(claim A). Therefore, the study of the “surface complexity” of languages provides an in-
teresting tool to probe the underlying complexity of UG under both claims.

It would however seem that this kind of study does not directly reveal which of
claim A and claim B is true. Indeed, any surface complexity will either be accommo-
dated as a complexity of the underlying description of languages (claim A) or as a com-
plexity of the underlying language (claim B).

Results The goal of this article is to show formally (under maybe unrealistic assump-
tions) that this intuition is incorrect and that the predictions of the two claims regard-
ing surface complexity can sometimes be teased apart. My main result is that if the
complexity of observed human languages is that of mildly context-sensitive grammars,
as described by 2-multiple context-free grammar, tree-adjoining grammars, Stabler’s
minimalist grammars, combinatory categorial grammars, then claim B is untenable.

For the problem to be amenable to formal analysis, I make some simplifying as-
sumptions, which may all be rejected. If they are, the point of this article can be seen
as one of principle: claim A and claim B are distinguishable on the basis of external
data only. One such simplifying assumption, and probably the most objectionable,
concerns the nature of the mapping to the phonological interface posited by claim
B. I posit that such mappings are rational transducers, and therefore complexity-wise
simple. This corresponds to the assumption that any complexity beyond finite-state
complexity observed in the phonological output is directly imputable to UG.

Another simplifying assumption is that the language described by UG under claim
B is a set of strings. This certainly goes against the standard view that UG should de-
scribe set of syntactic structures or trees. I take this approximation to be of minor im-
pact since low-complexity encoding schemes (e.g. Polish notation) can translate trees
to strings and vice-versa.

This article’s main result will be prefaced with other results which do not carry the-
oretical value but helps us understand the formal underpinnings of claim B. I will for
instance show a criterion that establish whether a given class of observed languages
can be seen as the image of one single language under a number of mappings. I will
also prove that the class of context-free languages can be described as the image of
one single language under a number of mappings, thus providing a stronger version of
the celebrated Chomsky-Schützenberger theorem. The same result will be offered for
recursively enumerable languages.

1I will call observed languages, the languages understood as sets of phonological strings. This is the
kind of languages that linguists interact with in order to get to the abstract language, i.e. the underlying
mental representation. Claim A correspond to the claim that there are multiple abstract languages for
different languages, claim B to the claim that there is only one.
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0.1 Setting up the stage

Under claim B, the set of possible human languages may formally be described as{
f (L)

∣∣ f ∈F
}
, where F is a fixed set of mappings and L the underlying language de-

scribed by UG. As justified in the introduction, I take F to be R the set of rational
transductions.

We are interested in the reverse problem: given a posited class C of possible ob-
served human languages, can it be seen as the image by all possible mappings of a
single language L? If it is, we will say that L generates C or that C is generative2. In
other words, C = {R(L) | R ∈R}, which we will abbreviate as C = 〈L〉. For convenience,
we will also say that L generates L′ just in case there is a rational transducer T such that
L′ = T (L). We note L ≺ L′.

If claim B is true, the class of all possible human languages ought to be generative.
We can now ask for particular well-established classes of languages whether they are
generative or not. If they are not, then claim A and claim B make divergent predictions:
claim A predicts that so long as a formal description of the class can be provided, that
class could be the class of human languages, claim B predicts it isn’t.

First on our list of class is the class of context-free languages ; this class is known
to be inadequate to capture human languages so any result about this class is of little
theoretical impact.

1 CFL and strong Chomsky-Schutzenberger theorem

1.1 Proving that context-free languages are generative

Consider the enumerable class of context-free languages C F L. Half of the work of prov-
ing that C F L is generative is done by the following theorem

Theorem 1 (Chomsky-Schützenberger).

C F L = {L | ∃n,∃T,T is a rational transducer∧L = T (Dn)}

where Dn is the n-th Dyck language

In our parlance, this theorem states C F L =⋃
n 〈Dn〉. This does not show that C F L is

generative. However, this theorem, as we will now see, is very suggestive. Suppose we
dropped the standard assumption that languages need be over a finite alphabet (cf 5.1).
Then we could consider the language D∞ =⋃

n Dn , the language of well-parenthesized
expressions when the number of parenthesis is infinite. Extending the notion of ratio-
nal transduction to languages over infinite alphabets, it would seem that the theorem
of Chomsky-Schützenberger entails C F L = 〈D∞〉. This of course does not make sense
since the notion of rational transduction has not been defined over infinite alphabets.

2This corresponds exactly to the notion of principal ideal used elsewhere
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To prove that C F L is generative, one would need to find a language over a finite
alphabet that can fulfill the role of D∞. As it turns out, there is a way to put in corre-
spondence words over an infinite alphabet with words over binary alphabet. This is
provided by the following alphabetic morphism:

Definition 1 (Infinite-to-finite conversion). φ is a morphism defined by φ(ai ) = ai
0a1

for all i

Since this morphism is injective, as can easily be checked, it does not lose any in-
formation about the original words. Through this morphism, we can now define a
version of D∞ over a binary alphabet. This new language, call it Ω, is simply φ(D∞).
This language can now be shown to generate C F L, just as D∞ was. Furthermore, it is
context-free.

Theorem 2 (Strong Chomsky-Schützenberger).

C F L = 〈Ω〉

Proof. See appendix

This shows the class of context-free languages is generative. Claim A and Claim B
are not distinguishable on this class.

2 A criterion for generativity

In this section, I study the notion of generativity in more details. At the end, I provide
a necessary and sufficient criterion for generativity on enumerable class of languages
closed under finite union and rational transduction. We start with the following easy
properties, which help motivate the restriction on the criterion below:

Theorem 3. If C is generative, then:

• C is closed under rational transduction.

• C is closed under finite union.

Proof. • Straightforward.

• If C = 〈L〉, and R(L) and R ′(L) are in C then R(L)∪R(L′) = (R ∪R ′)(L) is in C .

The following criterion yields a intensional characterization of generativity and in that
is useful. In practice, it is only really useful for showing non-generativity (see discus-
sion of mildly-context-sensitive languages for an example of use).
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Theorem 4 (Criterion for generativity). If C is an enumerable class of languages closed
under finite union and rational transduction, only one of the following statements hold:

• C is generative

• C =⋃
i Ci where (Ci ) is a strictly increasing sequence of generative classes.

Proof. See appendix for proof that one of these statements has to hold.
Let’s just prove that both statements cannot be true at the same time. Indeed if

C = 〈L〉 for some L and C =⋃
i Ci , then there must be some j such that L ∈C j . Since C j

is closed under transduction, 〈L〉 ⊂C j . But since the (Ci ) are strictly increasing, C j (C ,
a contradiction.

The astute reader will notice that there is an interesting clash with the Chomsky-Schützenberger
theorem here. According to this theorem, C F L = ⋃

n 〈Dn〉. The sequence (〈Dn〉) is
clearly increasing. But since C F L is generative, this sequence must be ultimately con-
stant. So there must be some n such that 〈Dn〉 =C F L. Which n? I venture the conjec-
ture that D1 generates C F L and that D0 does not. Basically, it seems that with encoding
of the like ofφ, one can show that two types of parenthesis is enough to encode all pos-
sible parenthesized expressions. In other words, D1 generates all the Dn . Showing that
one type of parentheses won’t be enough and that D0 does not generate C F L seems
more difficult so I leave the question open here.

We conclude this section with a more spectacular result, which suggests generative
classes may be quite big and complex. This suggests that claim B is less restricted of an
hypothesis than one may think.

Theorem 5 (Wild generation theorem). Let C be an enumerable class. Then C is in-
cluded in a generative class.

Proof. See appendix.

3 Mildly-context-sensitive languages

In this section, we prove that the class of mildly context-sensitive languages is not gen-
erative. This class allows serial dependencies that context-free grammars don’t, but
only in limited amount, so that its complexity remains close to that of context-free
languages, to which languages for the most part comply. If this class of languages
genuinely constitute the class of possible human languages, then our result show that
claim B cannot be correct, i.e. that human language cannot be reduced to mapping of
a single language to the interfaces.

Many mildly context-sensitive formalisms have been proposed. While each of them
comes with its own structures, they have been shown to be all weakly equivalent to a
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restriction of multiple context-free languages, called 2-multiple context-free languages
(hereafter MCFL). So for the purpose of proving, I will define and adopt 2-MCFL.

Definition 2. A 2-multiple context-free grammar (hereafter 2-MCFG) is constituted of:

1. a set of symbols S , which can be unary or binary, called the non-terminals

2. A distinguished unary non-terminal S, the end symbol

3. an alphabet Γ, subset of Σ

4. a set of rules P of the form:

A0(s1, s2) ← A1(x1, y1), A2(x2, y2) . . . An(xn)

or
A0(s1) ← A1(x1, y1), A2(x2, y2) . . . An(xn)

where :

• A0, A1,. . . An are unary or binary symbols (choose the form above which cor-
responds to the arity of A0)

• the si are strings made of the variables xi and letters of the alphabet Γ ; the
xi ’s have at most one occurrence in the si ’s

The rules in 2-MCFGs should be understood as rules of deduction. The language
defined by a 2-MCFG is the set of strings w such that S(w) can be deduced. Here fol-
lows an example of a 2-MCFG and examples of deduction:

(1) a. Language to be described: L = {w w w w | w ∈Σ1}, the language of powers of
four.

b. 2-MCFG that defines L:

• Non-terminals: A, B , S

• Rules:

A(ε,ε) ←
A(ax, ay) ← A(x, y)
A(bx,by) ← A(x, y)

B(x, y) ← A(x, y)
S(x y x ′y ′) ← A(x, y),B(x ′, y ′)

• Derivation of the word abababab: TO BE COMPLETED
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To conclude the proof, we need to invoke another refinement of the notion of 2-MCFLs.
In the current formalism, the rules of the grammars may have an arbitrary large num-
ber of premises. From that, one can define a more restricted set of grammars:

Definition 3. A 2-MCFG is a (2,i)-MCFG, if the right-handside of all rules has at most i
symbols. The class of languages defined by (2,i)-MCFGs is called (2,i)-MCFLs.

This restriction creates a hierarchy of class, each encompassing the previous one.

Lemma 1. 2MC S =⋃
i (2, i )-MC F L

Proof. Straightforwardly, since the number of rules in a MCFG is finite

Furthermore, it is known that this sequence of class is strictly increasing:

Lemma 2. (2,1)-MC F L ( (2,2)-MC F L ( . . .

Proof. See [Rambow and Satta, 1999].

Lemma 3. For all i , (2, i )MC F L are closed under rational transductions.

Proof. See appendix (TODO: write proof)

With these lemmas, we fall squarely within the case of application of our criterion.
We can now seamlessly deduce our main result

Theorem 6. 2-MCFL is not generative.

Proof. The sequence of (2,i)-MCFL is a strictly increasing sequence closed under ra-
tional transduction, whose union is 2-MCFL. By the criterion, 2-MCFL is not genera-
tive.

4 Recursively enumerable languages

5 Conclusion and discussion

References

[Rambow and Satta, 1999] Rambow, O. and Satta, G. (1999). Independent parallelism
in finite copying parallel rewriting systems. Theoretical Computer Science, 223(1-
2):87–120.
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Appendix

5.1 Enumerable class of languages

Throughout, we’ll make use of the following enumerable alphabet Σ = {a0, a1, a2, . . .}.
We say the support of a language L to be the set {a ∈Σ | ∃w ∈ L, a ≺ w}, the set of letters
used by the language. Unless otherwise specified, all our languages have finite support.

Definition 4. A class of languages is any set of languages with finite support.

We will note Σn the restricted alphabet {a0, . . . , an}. When talking about Σ1, it will
be convenient to rename the letters a0, a1 with a and b respectively.

Important remark. Whenever I will be talking about a rational or a context-free
language, the reader should understand a rational or a context-free language over
a finite alphabet Γ ⊂ Σ. In our parlance, all languages considered will have finite
support.

5.2 Rational Transducers

In this note, we will often make use of rational transduction.
While rational transduction is often described in terms of a machine that effects

the transduction, it will be useful for us to define it in terms of its closure properties.

Definition 5. The set of rational tranducers R over Σ is the smallest set such that:

• for any rational languages L1, L2, L1 ×L2 is in R

• for any rational transducer R1,R2 ∈R, R1 ∪R2 ∈R, R1 ◦R2 ∈R and R∗
1 ∈R.

Since rational languages have finite support, it will follow that rational tranducers
too have finite support. In other words, any rational tranducer will be a subset of Σn ∗
×Σn∗ for all n. Useful for what comes next is the following remark:

Theorem 7. R is enumerable

Proof. This follows from the machine characterization of rational transduction. Any
rational transducer may be defined by a machine (Q,Γ,Γ′,δ,ω,F ), where:

• Q is a finite subset of N: the set of states

• Γ and Γ′ are finite subsets of Σ: the input and output alphabets

• δ : Q ×Γ+ε→P (Q) : the transition function
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• ω : Q ×Γ+ε×Q → Γ′∗ : the output function

• F ⊂Q

So the set of machines is itself a enumerable union of finite sets, therefore enumer-
able. Since there exists a surjective mapping from machines to rational transducers, it
follows that R is enumerable.

5.3 Dyck languages

The n-th Dyck language Dn is the language of well-parenthesized expressions with
n-parenthesis. Given the alphabet Σ, we’ll consider that the a2i is the set of opening
parenthesis and a2i+1 is the corresponding set of closing parenthesis. For convenience
we can rename these symbols accodingly:

• [i
de f= a2i

• ]i
de f= a2i+1

An example is worth a thousand words:

(2) a. [0]0[0[0]0]0 ∈ D0

b. [0[1]1]0[1[0[0]0]0]1 ∈ D1

c. [1[2[1]1]2]1[0[0]0]0 ∈ D1

Formally:

Definition 6. Dn is the equivalence class under the equivalence relation ≡n generated
by the following:

• [0]0 ≡n ε

• [1]1 ≡n ε

. . .

• [n]n ≡n ε

5.4 Transducing classes

Definition 7. A class C is closed under rational transduction if for all L in C , for rational
transducers T , T (L) ∈C
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5.5 Proof of strong Chomsky-Schützenberger

We first need to show thatΩ generates all Dn for all n. From weak Chomsky-Schützenberger,
it will then follow that C F L ⊂ 〈Ω〉.

For that, we construct a rational transducer from Ω to Dn . Consider the following
relations between words of Σ1 to words of Σ2n+1: Ri =

{
ai

0a1
}× {ai } for i ≤ 2n +1 and

R2n+2 = a2n+2
0 a∗

0 a1 × ε. All these relations are rational transducers because they are
the Cartesian product of two rational sets. So the relation R = (R0 ∪ . . .∪R2n+2)∗ is a
rational transducer.

The relation R is defined so that for every i from 0 to 2n +1, R(φ(ai )) = {ai } and for
every i > 2n + 1, R(φ(ai )) = ε. From this, it is easy to show that if w ∈ Ω and can be
written as φ(w ′) where w ′ ∈ D∞, R(w) = {

w ′′} where w ′′ is the word obtained from w ′

by removing all letters ai for i > 2n +1. Consequently, R(Ω) = Dn .
So C F L ⊂ 〈Ω〉. To show the converse, we just need to prove thatΩ is a context-free

language. Since context-free languages are closed under rational transductions, it will
follow that any language generated by Ω is context-free, thus C F L ⊃ 〈Ω〉. To do that, I
provide a grammar that generatesΩ:

S → SS (1)

S → ε (2)

S → Pa1 (3)

P → a0a0Pa0a0 (4)

P → a1S (5)

We just need to show that this a grammar of Ω indeed. The following lemma do the
trick.

Lemma 4.
S →∗ φ([n) S φ(]n)

Proof. Use rule 3 and n times rule 4 and one time rule 5 to get: S →∗ a2n
0 a1 S a2n+1

0 a1

Lemma 5. For every word w in Dn , S →∗ φ(w)

Proof. Dn can be generated by the following grammar:

S →
Dn

SS (1′)

S →
Dn
ε (2′)

S →
Dn

[nS]n (3′)
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If w is in Dn , then S →
Dn

. . . →
Dn

w . From this derivation of w , one can construct a deriva-

tion ofφ(w) by replacing every use of rule 1′, 2′ by the corresponding 1 and 2 and every
use of 3′ by use of the derivation in lemma 4.

From this it follows that the language generated by the grammar contains Ω. The
converse is obtained by the following lemma.

Lemma 6. If S →∗ w, then w ∈Ω
Proof. By induction over the length of the derivation S →∗ w . The only derivation one-
step long derivation is S → ε. ε=φ(ε) is clearly inΩ.

For longer derivations, if the first step is S → SS(→∗ w), then one can find two
words w1 and w2 such that w = w1w2 and S →∗ w1 and S →∗ w2 in less steps. By
the induction property, w1, w2 ∈Ω. So w = w1w2 = φ(w ′

1)φ(w ′
2) = φ(w ′

1w ′
2) for some

w ′
1 and w ′

2 ∈ D∞. Since all the Dn are closed under concatenation, w ′
1w ′

2 ∈ D∞ and
consequently, w ∈Ω

If the first step of the derivation is S → Pa1, then the following steps must be a
sequence of application of 4 followed by one application of 5. This is the sequence of
lemma 4. So for some k, the derivation is as follows S →∗ φ([n) S φ(]n) →∗ w . This
means that w = φ([n) w0 φ(]n) and that S →∗ w0 in less steps. So by the induction
property, w0 =φ(w ′

0) for some w ′
0 ∈ D∞. Thus, w =φ([n w ′

0]n). So w ∈Ω.

5.6 Proof of the criterion

The following tool will be needed in the proof

Lemma 7. Let C be an enumerable class of languages closed under finite union and
rational transduction. If L1 and L2 are in C , then there exists a language L in C such
that 〈L1〉∪〈L2〉 ⊂ 〈L〉
Proof. First, let’s find in C a copy of L2 that has a support disjoint from that of L1. Since
L1 has finite support, we can find an n such that the support of L1 is included in Σn .
One can then define a alphabetic morphism φ defined on the support of L2 such that
for all l , φ(al ) = al+n+1. Let L′

2 = φ(L2) ; since no letter is mapped to an element of Σn

by φ, the supports of L1 and L′
2 are disjoint.

Next, consider L = L1 ∪L′
2. Let S1 and S2 be the supports of L1 and L2 respectively.

By construction, S1 ∩S2 = ;. Let w1 and w2 be two words of L1 and L2. We can now
define two rational transducers: R1 = I d S1∗∪

(
S∗

2 × {w1}
)

and R2 = I d S2∗∪
(
S∗

1 × {w2}
)
. I

claim that L1 = R1(L) and L2 = R2(L). Here is the computation that shows it:
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R1(L) = [
I d S1∗∪

(
S∗

2 × {w1}
)]

(L1 ∪L2)

= I d S1∗(L1)∪ I d S1∗(L2)∪ [
S∗

2 × {w1}
]

(L1)∪ [
S∗

2 × {w1}
]

(L2)

= L1 ∪;∪;∪ {w1}

= L1

And mutatis mutandis for R2(L). So L generates both L1 and L2 and consequently all
the languages they generate ; so 〈L1〉∪ 〈L2〉 ⊂ 〈L〉. Furthermore, since L was obtained
from L1 and L2 by union and rational transduction only, L ∈C

Most of the criterion’s content is included in the following lemma:

Lemma 8. Let C be an enumerable class of languages closed under finite union and ra-
tional transduction. Then C =⋃

i 〈Li 〉 where the sequence of classes (〈Li 〉) is increasing.

Proof. Let (L′
i ) be an enumeration of the languages in C . Then C = ⋃

i
〈

L′
i

〉
. We can

construct the Li from the L′
i by induction. Our induction will guarantee that the fol-

lowing holds:

• (〈Li 〉) is increasing

•
⋃

i≤n
〈

L′
i

〉⊂ 〈Ln〉

One can take L′
0 to be L0. Now assume all Li up till n have been constructed. Ln and

L′
n+1 are in C . By lemma 7, there exists a Ln+1 such that 〈Ln〉∪

〈
L′

n+1

〉 ⊂ 〈Ln+1〉. From
this, it follows that a) 〈Ln〉 ⊂ 〈Ln+1〉 and b)

⋃
i≤n+1

〈
L′

i

〉 ⊂ 〈Ln〉∪
〈

L′
n+1

〉 ⊂ 〈Ln+1〉, con-
cluding the induction.

The sequence of (〈Li 〉) satisfies the requirements of the lemma: it is increasing and
since

⋃
i≤n

〈
L′

i

〉⊂ 〈Ln〉 for all n, C =⋃
i
〈

L′
i

〉⊂⋃
i 〈Li 〉 ⊂C so L =⋃

i 〈Li 〉.
To conclude the proof of the criterion, we notice that two cases may happen:

• The sequence (〈Li 〉) is ultimately constant. Let’s call k the rank after which it is
constant. Then 〈Lk〉 = 〈Lk+1〉 = . . . =C . C is therefore generative.

• The sequence (〈Li 〉) is not ultimately constant. This means that for all k, one
may find a k ′ > k such that 〈Lk〉 ( 〈Lk ′〉. From that fact, it follows that one
can construct a subsequence

(〈
Lψ(i )

〉)
of (〈Li 〉) that is strictly increasing. Since⋃

i≤ψ(n) Li ⊂ Lψ(n),
⋃

i Lψ(i ) =C

This corresponds to the two cases from the theorem.
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5.7 Wild generation theorem

I claim that without loss of generality, we may assume that C is closed under rational
transduction. Indeed, consider C0 the closure of C under finite union. Consider C1 the
closure of C0 under rational transductions. I leave it to the reader to show that C1 is
still closed under union3. If C1 is contained in a generative class then it will follow that
C , which is smaller, will be contained in a generative class. We just need to show that
C1 is enumerable. This follows from the following two lemmas:

Lemma 9. If D is enumerable, its closure under finite union is too

Proof. Consider Dn = {L1 ∪ . . .∪Ln | L1, . . . ,Ln ∈ D}. Dn is the image of Dn under the
following mapping: {

Dn → D
(L1, . . . ,Ln) 7→ L1 ∪ . . .∪Ln

Since Dn is enumerable, so is Dn its image. The closure of D under finite union is the
enumerable union of Dn . It is therefore enumerable.

Lemma 10. If D is enumerable, its closure under rational transduction is too.

Proof. The closure of D under rational transduction D ′ is the image of D×R under the
following mapping: {

D ×R → D ′

(L,R) 7→ R(L)

Since R is enumerable by theorem 7, so is D ′

So we can assume C to be enumerable, closed under rational transduction and fi-
nite union. By the criterion and its proof, we know that two cases may occur: a) C is
generative, in which case the proof is complete, b) C = ⋃

i 〈Li 〉 where (〈Li 〉) is strictly
increasing. In fact, the proof of the criterion yields a stronger statement ; we can as-
sume the Ln to be the union of languages Mi for i ⊂ n where the the languages Mi have
disjoint supports.

Next, consider the language M = ⋃
i Mi . M has infinite support so it can’t be the

input to a rational transducer, but we can use the same infinite-to-finite encoding we
used in the proof of the strong Chomsky-Schützenberger. Consider K = φ(M) where
φ is the alphabetic morphism defined in the section ??. To conlude the proof we just
need to show that K generates all of the Ln ’s.

Consider a particular n. Let Γ be the finite support of Ln . The set of encodings
by φ of letters that are not in Γ (i.e. E = {

an
0 a1

∣∣ an 6∈ Γ}
) is a rational set, since Γ is

finite. So T0 = E × {w}, where w is any word of Ln is a rational transducer. And so is
T = T0 ∪⋃

ai∈Γ
{

ai
0a1

}× {ai }. It is easy to show that for all i > n, T (φ(Mi )) = {w} and

3The reader can be inspired by lemma 7.
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that for all i ≤ n, T (φ(Mi )) = Mi . Consequently, T (K ) = T (φ(
⋃

i≤n Mi ∪⋃
i>n Mi )) =⋃

i≤n T (φ(Mi ))∪⋃
i>n T (φ(Mi )) =⋃

i≤n Mi ∪ {w} = Ln

To conclude, K generates all the Ln , so it generates all languages in C . In short
C ⊂ 〈K 〉.
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