Background

Puzzle: universal/existential reading of donkey anaphora

- (1) a. Every farmer who owns a donkey₁ cherishes it₁. cherishes all of his donkeys.
 - b. Every customer with a credit card₁ pays with it₁. $\leftrightarrow \rightarrow$ pays with **one** credit card.

Questions:

- How does the pronoun access its referent?
- Where does the ambiguity originate?

Main claims

- A. The readings surface in non-quantified environments, e.g. simple conjunctions.
- B. The ambiguity is local to the pronoun, i.e. implicit quantification takes narrow scope.
- C. The ambiguity arises when the pronoun must choose between multiple referential targets.

Type-shifting accounts

(Rooth, 1985; Root, 1986; Groenendijk et al., 1991; Champollion et al., 2017)

Account:

• Scope-extension rule (=SE rule) for cross-clausal anaphora:

"Some A₁ is B; it₁ is C" $\rightarrow \exists x : A(x), (B(x) \land C(x))$

- Two recipes for creating dynamic quantifiers:
- (2) Q(restrictor)(scope)
 - a. Existential: Q(restrictor) (restrictor \land scope)
 - b. Universal:
 - Q(restrictor) (\neg (restrictor $\land \neg$ scope))

Consequence The validity of the type-shifting accounts is tied to the validity of the scope-extension rule.

Gaps in the interpretation of pronouns

Keny Chatain (MIT) : kchatain@mit.edu

SALT 28

#1: Narrow pse	udo-scope re	ading	Analysis
 (3) a. Every citizen who has a valid ID₁ shows it₁ whenever she is asked to. b. Every father who received a chocolate bar₂ gave a 			When multiple referential pronoun has vague referen vagueness projection and
piece of it ₂ to	each of his kids	Analysis	
			I. E-type pronoun (Coop
			(7) <i>it</i> ~-> { <i>f</i> (donkey he ow
t _o	t ₁	t ₂	II. Vagueness projects as (Kratzer et al., 2017).
Read	ling: ∀ ≫ when		
Weakest possible reading under the type-shifting accounts: $\forall \gg \exists \gg$ whenever			(8) a. $[\mathbf{f} \mathbf{x}]^{g,w} = \{f(\mathbf{x}) \mid f \in \mathbf{D}_{et} $ b. $[\lambda_i \mathbf{p}]^{g,w} = \{f \in D_{et} $ \rightsquigarrow different values for
			III. Trivalent conventions

#2: Universal readings across conjunctions

Bets:	
 Winning conditions = Truth-conditions 	
 No scalar implicatures in their scope 	
(4) I bet you 10\$ that some students will fail the test. All students fail \Rightarrow Speaker wins	
Universal reading.	
(5) Bet+biasing items	
a. I bet you 10\$ that Mary has an umbrella and that	
she left it at home today.	

b. I bet you 10\$ that Charles has a hat and that he is not wearing it right now.

The bet is lost!

Narrow pseudo-scope also surfaces in conjunctions:

(6) I bet you 10\$ that Charles received a chocolate bar and that he gave a piece of it to all of his children.

targets are available, the nce. #1 and #2 follow from resolution rules.

per, 1979) + Vagueness vns) | f is a choice function }

in alternative semantics

 $\in \llbracket \mathbf{f} \rrbracket^{g,w}, x \in \llbracket \mathbf{x} \rrbracket^g \}$ $| \forall x, f(x) \in [p]^{g[i/x],w}$

i may use different alternatives.

true	{true}
false	{false}
#	{true, false}

IV. Križ's maxim of quality for trivalent propositions (using an idea of Champollion, 2016)

Maxim of quality.

Only utter sentences that are true enough

S true enough in w with respect to issue I iff $\exists w', S$ is true in w' and $w \approx_l w'$

Conclusion

• Our data point to the inadequacy of the SE rule, a central tenet of DS.

• The \exists/\forall ambiguity is more general than has been reported.

• Empirically, the predictions of the analysis match those of Champollion et al., 2017...

• ... except in conjunction and low pseudo-scope cases.

Predictions

The vagueness surfaces regardless of the environment.

b. [(9a)]^{g,w} =

#

It interacts with λ -abstraction to create narrow pseudo-scope.

(9) a. A donkey came and ... it[donkey that came] brayed

{f (donkey that came) brayed in $w | f \in CH$ }

true if all donkeys that came brayed

false if no donkeys that came brayed otherwise